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Abstract 

Early diagnosis of diseases such as diabetes and high blood pressure, which have a direct effect on retinal blood 

vessels, is very important. In this research, we propose a complex convolutional network with a spatial U-Net, which 

is used without the need for a large number of training data in a data augmentation manner for optimal use of samples. 

U-Net is a spatial module that expands the attention map along the spatial dimension and multiplies it to the input 

feature map for adaptive feature refinement. The input of the complex convolutional network is the structured output 

blocks from the previous step and does not use the initial spatial U-Net convolution, which avoids additional 

processing and increases accuracy. To evaluate the proposed method, you use two retina data sets. Two sets of retinal 

vessel extraction data (DRIVE) and data (CHASE_DB1) show that the proposed method performs well in both data 

sets. 
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Introduction 
Observing the fundus vascular system can help diagnose and track many diseases, including diabetes and 

hypertension, which can cause changes in the morphology of the blood vessels of the retina. Diabetes, in particular, 

can cause systemic microvascular and small vessel diseases, with the retinal vascular disease being the most 

vulnerable[1]. This can result in Diabetic Retinopathy (DR), which requires special attention if swelling is observed 

in the blood vessels of the retina. Patients with long-term hypertension may notice blood vessel curvature or vascular 

stenosis due to increased arterial blood pressure, known as hypertensive retinopathy (HR)[2] [3]. 

 
Segmenting the retinal blood vessels is essential for a quantitative analysis of fundus images. This process helps to 
obtain relevant morphological information about the retinal blood vessel tree, such as the curvature, length, and width 
of the blood vessels[5]. The unique characteristics of the vascular tree of Retinal vessels can also be applied to 
biometric recognition. Therefore, accurate segmentation of retinal blood vessels is of great significance. However, 
retinal blood vessels are fragile and numerous, and the blood vessels are closely connected, making the retinal blood 
vessel tree structure complex. The segmentation of retinal blood vessels is a challenging task due to various factors 
such as the lack of clear distinction between the blood vessel area and the background, as well as the susceptibility of 
fund images to uneven lighting and noise[6]. In the past few decades, many retinal blood vessel segmentation methods 
have been proposed, mainly divided into manual and automatic segmentation methods. Manual segmentation is time-
consuming and labor-intensive, requiring high professional skills. 
 On the other hand, automatic segmentation algorithms can reduce the burden of manual segmentation. With the recent 
advancements in deep learning, U-Net has become a common network architecture for retinal segmentation. However, 
these variants of U-Net can make the network more complex and less interpretable[7]. To address this issue, the Spatial 
Attention U-Net (SA-UNet) was proposed, which employs a structured dropout convolutional block integrating Drop 
Block and batch normalization (BN) to replace the original U-Net convolutional block[8]. Additionally, spatial 
attention was introduced to enhance important features, such as vascular features, and suppress unimportant features. 
SA-UNet was evaluated on two public retinal fundus image datasets and achieved state-of-the-art performance 
compared to other existing methods for retinal vascular segmentation. 
 

 
Figureure(1). Diagram of the proposed SA-UNet 

 
 
II. METHODOLOGY 

 

A. Network Architecture 



 
 
The proposed SA-UNet architecture is shown in Figure. 1, and it consists of a U-shaped encoder-decoder structure. 
In the encoder, each step contains a structured dropout convolutional block and a 3*3 max pooling operation. The 
convolutional block of each step is made up of a DropBlock, batch normalization (BN) layer, and rectified linear unit 
(ReLU), followed by the max pooling operation for down-sampling, with a stride size of 3. At each down-sampling 
step, the number of feature channels is doubled.  
In the decoder, each step involves a 3*3 transposed convolution operation for up-sampling, which halves the number 
of feature channels. The output is then concatenated with the corresponding feature map from the encoder. This is 
followed by a structured dropout convolutional block. The spatial attention module is added between the encoder and 
decoder.  For the output segmentation map, a 2*2 convolution and Sigmoid activation function are used at the final 
layer. 
 
B. Structured dropout complex convolutional block 
 

Data augmentation is a common technique used to prevent overfitting in machine learning models. However, even 
after performing data augmentation on the original datasets, we observed serious overfitting during the training of the 
original U-Net, as shown in Figureure 2 (left). To address this issue, we employed a lightweight U-Net with 28 
convolutional layers as our basic architecture. However, this architecture still suffered from an overfitting problem, 
as demonstrated in Figureure 2 (middle). To solve this problem, we adopted DropBlock, a structured form of dropout, 
which is known to effectively prevent overfitting problems in convolutional networks. Unlike traditional dropout, 
DropBlock discards contiguous areas from a feature map of a layer instead of dropping independent random units. 
We constructed a structured dropout convolutional block, where each convolutional layer is followed by a DropBlock, 
a layer of batch normalization (BN), and a ReLU activation unit. This block was employed instead of the original 
convolutional block of U-Net to build a U-shaped network as our "Backbone". Our Backbone has only 20 
convolutional layers, compared to the 29 convolutional layers of the original U-Net. As shown in Figureure 2 (left), 
the overfitting problem was perfectly solved by using this structured dropout convolutional block and it accelerated 
the convergence of the network. Additionally, we introduced batch normalization (BN) to the structured dropout 
convolutional block to improve the network's convergence. 
 

 
Figureure (2).Comparison of different models training 100 epochs on DRIVE. 

 
 
C. Spatial Attention Module (SAM) 
The Spatial Attention Module (SAM) is a component of the convolutional block attention module which is used for 
classification and detection [14]. SAM leverages the spatial relationship between features to generate a spatial 
attention map. To calculate the spatial attention, SAM applies max-pooling and average-pooling operations along the 
channel axis and concatenates them to create an efficient feature descriptor, as depicted in Figureure 4. 
Formally, input feature 𝐹 ∈ 𝑅𝐻×𝑊×𝐶    is fowarded through the channel-wise max poling and average-pooling to 

generate outputs𝐹𝑚𝑝
𝑆 ∈ 𝑅𝐻×𝑊×1  and𝐹𝑎𝑝

𝑆 ∈ 𝑅𝐻×𝑊×1  , respectively. Then a convolutional layer followed by the 

Sigmoid activation function on the concatenated feature descriptor is used to generate a spatial attention map𝑀𝑠(𝐹) ∈
𝑅𝐻×𝑊×1   . In short, the output feature 𝐹𝑠(𝐹) ∈ 𝑅𝐻×𝑊×𝐶 of spatial attention module is calculated as: 
 
𝐹𝑆 = 𝐹.𝑀𝑆(𝐹) = 

𝐹. 𝜎(𝑓7∗7([𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹); 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)])) = 

𝐹. 𝜎(𝑓7∗7([𝐹𝑚𝑝
𝑆 ; 𝐹𝑎𝑝

𝑆 ])) 
                                                                                                      (1) 
 



 
III. EXPERIMENTS 
A. Datasets 
 
Our proposed SA-UNet was evaluated on two publicly available retinal fundus image datasets: DRIVE and CHASE 
DB1. Table 1 provides specific information on the two datasets. It is important to note that the original size of the 
datasets was not appropriate for our network. Therefore, we adjusted their size by adding zero padding around them. 
However, during evaluation, the size was cropped back to the initial size. To enhance the data, we used four data 
augmentation methods, as shown in the last column of Table 1, for both datasets. Each method generated three new 
images from the original image. This augmentation process increased the number of training images from the original 
20 to 256, for both datasets. 

 

 
Figureure (3) . Original U-Net block (left), SD-Unet block (middle), Structureddropout convolutional 

 
Figureure (4). Diagram of the Spatial Attention Module 

 
B. Evaluation Metrics 

To evaluate the performance of our model, we compare the segmentation results with the corresponding ground truth. 

We divide the results of each pixel comparison into four categories: true positive (TP), false positive (FP), false 

negative (FN), and true negative (TN). Then, we use sensitivity (SE), specificity (SP), F1-score (F1), and accuracy 

(ACC) to assess the model's performance. In retinal vessel segmentation, only a small percentage (9%-14%) of the 

pixels belong to blood vessels, while the rest are considered background pixels. For performance measurement of 

binary classifications with two categories of different sizes, the Matthews Correlation Coefficient (MCC) is suitable. 

The MCC value helps to determine the optimal setting for the vessel segmentation algorithm. 

 
MCC is defined as follows: 
 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
        (2) 

 
Table I the specific information of DRIVE and CHASE-DB1 Datasets 

Datasets DRIVE CHASE-DB1 



 

Obtained form Dutch Diabetic 
Retinopathy 

Screening Program 

Child Heart and 
Health Study 

Total number 40 28 
Train/ Test 

number 
20/20 20/8 

Resolution (pixel) 584*565 999*960 
Resize(pixel) 592*592 1008*1008 

 

 
Figureure. (5). (a) A test image from DRIVE dataset; (b) Segmentation result by U-Net; (c) Segmentation 
result by UNet+SA;(d)Segmentation result by AG-Net; (e) Segmentation result by SD-Unet; (f) Segmentation 
result by Backbone; (g) Segmentation result by SA-UNet; (h) Corresponding ground truth segmentation 

 

 

 
C. Implementation Details 
 

To ensure that our network is not overfitting, we randomly selected 26 and 13 images from the DRIVE and CHASE 

DB1 augmented datasets as the validation set. We trained the SA-UNet from scratch using the augmented training set, 

and employed the Adam optimizer and the binary cross entropy loss function for both datasets. To reduce the number 

of parameters, we set the number of channels after the first convolutional layer to 16. We trained the model for 150 

epochs, with a learning rate of 0.001 for the first 100 epochs and 0.0001 for the last 50 epochs. The size of the discard 

blocks of DropBlock is set to 7. For the DRIVE dataset, we set the batch size to 8 and the dropout rate of DropBlock 

to 0.18. For CHASE DB1, the batch size is set to 4 and the dropout rate is 0.13. We implemented the model using the 

public Keras with Tensorflow as the backend, and all experiments were run on an NVIDIA TITAN XP GPU with 12 

Gigabyte memory. Figure. 2 shows the case of training 100 epochs on the DRIVE dataset. 

 

 



 

IV. Results Discussion 

A. Ablation Experiments 

A series of experiments were conducted on DRIVE and CHASE_DB1 to demonstrate that each component of the 

proposed SA-UNet can improve the performance of retinal vascular segmentation. In Tables II and III, the 

segmentation performance of U-Net, U-Net + SA, SD-Unet, Backbone, and SA-UNet are shown in decreasing order 

of performance, respectively. The parameter quantities of different models are shown in Table IV. From the results, 

several useful observations were made:  (1) U-Net + SA outperforms U-Net with only 98 additional parameters, 

demonstrating the effectiveness of introducing spatial attention.  (2) When using a structured dropout convolutional 

block based on U-Net, the ACC, AUC, F1, and MCC of the Backbone are higher than U-Net by 0.28%/0.22%, 

0.73%/0.59%, 2.42%/2.48%, and 2.48%/2.64% on DRIVE and CHASE_DB1, respectively. This shows that the newly 

constructed structured dropout convolutional block is effective in building the Backbone. (3) The Backbone has a 

better performance compared to the original SD-Unet, even with a slightly increased number of parameters. This 

shows that adding batch normalization (BN) can improve network performance to a certain extent.  (4) The proposed 

SA-UNet achieves the best performance on most metrics and has a much smaller number of parameters compared to 

AG-Net and the original U-Net with 23 convolutional layers. Therefore, for the task of retinal blood vessel 

segmentation, SA-UNet is a lightweight and effective network. In Figureure 5, a test example on the DRIVE dataset 

is shown, which includes the segmentation results obtained by U-Net, U-Net + SA, AG-Net, SD-Unet, Backbone, and 

the proposed SA-UNet, and the corresponding ground truth. Compared to U-Net and U-Net + SA, AG-Net has certain 

advantages in the segmentation of the edge structure, but is not strong enough at the intersection of small blood vessels. 

SD-Unet ignores some edge and small vascular structures and even produces incorrect segmentation. The Backbone 

produces more accurate small vessel segmentation than the U-Net and SD-Unet, demonstrating the effectiveness of 

the Backbone constructed using structured dropout convolutional blocks. Compared to the Backbone, the SA-UNet 

proposed can produce more accurate segmentation results for border blood vessels and retain more retinal blood vessel 

spatial structure, demonstrating that spatial attention mechanism can highlight blood vessels and reduce the influence 

of background. To better observe the results, more segmentation examples of U-Net, Backbone, and SA-UNet on 

DRIVE and CHASE_DB1 are shown in Figureures 6 and 7, respectively. 

 

TABLE II. ABLATION STUDIES ON DRIVE DATASET 

 
Methods  SE  SP  ACC  AUC  F1  MCC 
U-Net  0.767

7  
0.985

7  
0.966

6  
0.978

9  
0.801

2  
0.783

9 
U-Net + 

SA  
0.788

3  
0.984

5  
0.967

3  
0.980

9  
0.808

5  
0.790

9 
SD-Unet  0.797

8  
0.986

0  
0.969

5  
0.985

8 
0.820

8  
0.804

5 
Backbone  0.824

6  
0.983

2  
0.969

4  
0.986

2  
0.825

4  
0.808

7 
SA-UNet  0.821

2  
0.984

0  
0.969

8  
0.986

4  
0.826

3  
0.809 

 
TABLE III. ABLATION STUDIES ON CHASE_DB1 DATASET. 

Methods  SE  SP  ACC  AUC  F1  MCC 
U-Net  0.784

2  
0.986

1  
0.973

3  
0.983

8  
0.787

5  
0.773

3 
U-Net + 

SA  
0.784

0  
0.986

5  
0.973

8  
0.985

2  
0.790

2  
0.776

3 
SD-Unet  0.829

7  
0.985

4  
0.975

6  
0.989

7  
0.810

9  
0.798

1 
Backbone  0.842

2  
0.984

4  
0.975

5  
0.989

7  
0.812

3  
0.799

7 
SA-UNet  0.857

3  
0.983

5  
0.975

5  
0.990

5  
0.815

3  
0.803

3 
 

Table IV. AMOUNT OF PARAMETERS ON DIFFERENT MODELS 

Models Total Tranable Non-trainable 

AG-Net 9335340 9335340 0 
28 Layers-U Net 2158705 2158705 0 
20 Layers-U Net 535793 535793 0 
U Net+ SA 535891 535891 0 



 

SD-Unet 535793 535793 0 
Backbone 538609 537201 1408 
SA-Unet 538707 537299 1408 

 

 
B. Comparisons with state-of-the-art methods 

We have compared the performance of SA-UNet with other state-of-the-art methods currently being used in retinal 
vessel segmentation tasks. In Tables V and VI, we have provided a summary of the release year of different methods, 
their performance, and the CHASE_DB1 datasets. The results show that SA-UNet has achieved the best performance 
in both DRIVE and CHASE_DB1, with the highest sensitivity of 0.8512 / 0.8973, the highest accuracy of 
0.9998/0.9855, and the highest AUC of 0.9964 / 0.9985. Although the specificity is comparable with other methods, 
SA-UNet has better segmentation performance than the best-performing AG-Net in the previous methods, particularly 
at the intersection of small blood vessels, as shown in Figure. 5. Remarkably, the parameter amount of SA-UNet is 
much smaller than that of AG-Net. The above results demonstrate that SA-UNet has achieved state-of-the-art 
performance in the retinal vessel segmentation challenge. 
 

TABLE VI. RESULTS OF SA-UNET AND OTHER METHODS ON DRIVE DATASETS. 

CHASE-DB1 Datasets  

AUC ACC SP SE Metrics 

0.9790 0.9535 0.9807 0.7811 [15] 

0.9507 0.9454 0.9684 0.7897 [16] 

0.9752 0.9542 0.9818 0.7653 [17] 

0.9807 0.9567 0.9819 0.7844 [18] 

0.9772 0.9567 0.9816 0.7940 [7] 

0.9821 0.9578 0.9802 0.8038 [8] 

0.9856 0.9692 0.9848 0.8100 [9] 

0.9805 0.9898 0.9845 0.8503 This Work 

 
 

TABLE VI. RESULTS OF SA-UNET AND OTHER METHODS ON CHASE_DB1 DATASETS. 

CHASE-DB1 Datasets  



 

AUC ACC SP SE Metrics 

0.9823 0.9628 0.9836 0.7816 [15] 

0.9524 0.9458 0.9712 0.7277 [16] 

0.9781 0.9610 0.9809 0.7633 [17] 

0.9825 0.9637 0.9847 0.7538 [18] 

0.9812 0.9661 0.9821 0.8074 [7] 

0.9812 0.9661 0.9814 0.8132 [8] 

0.9863 0.9743 0.9848 0.8186 [9] 

0.9905 0.9755 0.8573 0.8573 This Work 

 
 
Conclusions 

Most datasets of retinal fundus images are relatively small, which can make it difficult to train deep 
neural networks. To help with learning, data augmentation is often employed, but even with this 
approach, it's common to observe overfitting. To address this issue, we developed a new approach 
inspired by the successful use of DropBlock and batch normalization in convolutional neural networks. 
Our approach replaces the convolutional block of U-Net with a structured dropout convolutional block that uses 
DropBlock and batch normalization as its backbone. Additionally, in retinal fundus images, it can be challenging to 
distinguish between the blood vessel area and the background, especially when it comes to small blood vessels and 
edges. To help the network learn these features, we've added a spatial attention module between the encoder and 
decoder of the backbone, resulting in a Spatial Attention U-Net (SA-UNet). By using spatial attention, we're able to 
help the network focus on important features and suppress unnecessary ones, improving its representation capability. 
We've tested SA-UNet on two publicly available datasets of retinal fundus images, DRIVE and CHASE_DB1, and 
have found that our approach is effective. In fact, when compared with other state-of-the-art methods for retinal vessel 
segmentation, our lightweight SA-UNet achieves state-of-the-art performance. We believe that SA-UNet is a general 
network and can be applied to other retinal vessel segmentation tasks due to the similar vascular structure 
characteristics of the retinal image. 
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