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Abstract 
Drones are flying robots with many structures that can fly unmanned and can composite with some 

degree of intelligence to help them make appropriate decisions when facing new situations. Also, with 

the progress of artificial intelligence (AI) in recent years, its application can be seen in most other 

branches. This paper presents the design of such an intelligent drone that is capable of doing proper 

maneuvering when it is flying over roads. specifically, we used a deep learning network to train it by a 

big dataset of images from nature and urban roads gathered by 3 cameras and we got help from fuzzy 

logic to gain the best angle and speed that keep the drone in the path. The goal is to improve the 

accuracy of learning by extending the dataset and the network compared to previous works and 

decreasing the complexity by fuzzy logic. We used this method on the hexacopter on the road outside 

the city at low altitude which had good results. 
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Introduction 
Recently, automatic locomotion of robots has been one of the main subjects for research and development by many 
automotive and military sectors. The idea is to place robots on roads by using the existing path patterns and estimating 
distance from surrounding obstacles via appropriate sensors. The challenge is to detect and extract patterns to train 
robots on paths such as unpaved forest roads where environmental patterns are not completely visible. Moreover, 
locomotion in natural environments is prone to much harsher complications than in man-made roads, especially for 
flying robots. on the other hand, with the success of approaches such as deep learners in the automatic extraction of 
attributes, this paper proposes a method based on deep learning to train a drone. Moreover, fuzzy logic is employed 
for robot locomotion to estimate the drone speed and angle. 
According to previous research, deep learning paves the way for facility and accuracy to extract features. Moreover, 
researchers reap the benefits of deep learning to extend robot control. The unmanned aerial vehicle requires a precise 
estimation to achieve a successful flight. Do et al. (2018) address the problem of autonomous quadrotor navigation in 
indoor spaces. They use the area's visual map as a graph of linked images to determine visual paths for the quadrotor 
to follow. In autonomous drone racing, a Drone is required to fly through the gates quickly without any collision. Jung 
et al. (2018) introduced a convolutional neural network to estimate a gate's center to fly through the gates without 
collision. Achieving precise estimation is needed for the unmanned aerial vehicle to perform a successful flight with 
a high degree of stability. Al-Sharman et al. (2019) developed a deep learning-based framework to enhance the state 
estimator's performance. In the discussion of automating drones' movement, Giutsi et al. (2016) proposed an approach 
based on the neural network used to control a quadrotor to trail forest areas. Also, Ki Kim and Chen (2015) used a 
deep learning model to learn a control strategy that mimics an expert pilot's choice of action in corridor spaces. 
 

PROPOSED SOLUTION 
Our approach comprises three phases. In the first (dataset development), a great deal of dataset, including images 
taken from the environment, was gathered to insert the deep learning model. Secondly (Build and train deep neural 
network model), it is supposed to build a deep neural network model structure trained by the dataset. In the third 
(drone movement), an image from the environment is taken by a camera installed on the Drone to transfer to the neural 
network model. Additionally, the neural network model delivers an output to the fuzzy system to acquire an estimate 
of the speed and turn angle of the robot. Before describing this approach's details, let us take a look at the hardware 
and software employed in the research. The research uses a handmade hexacopter shown in Figure 1, including EMAX 
3510 brushless motors and 50A speed controllers with a 6000 Mah battery. The Pixhawk flight controller, equipped 
with a GPS and ultrasonic sensor, is responsible for controlling the flight. The xu4 single-board computer process the 
information to be sent to the flight controller. The ov2710 camera takes photos from the environment and transfers 
them to the computer for processing. 
 

 
Figure 1 The Drone used in this paper 

The computer used in the training phase is equipped with an Nvidia GeForce 750ti graphics card and 12 G.B. of RAM, 
which is used to perform GPU learning operations. The Pixhawk flight controller mounted in this Drone utilizes the 
PX4 ROM and connects to the odroid-xu4 single-board computer through the Mavlink protocol. The Ubuntu 16.04 
OS, the FlytOS package, and ROS Kinetic are installed on the odroid-xu4 to control the flight controller. The Keras 
Library with TensorFlow Backend has been used for Learning operations. All software and libraries use on odroid-
xu4 are also installed on a more powerful computer. 

A. Dataset Development 
 The research dataset consisted of the photos collected from the source dataset, which capture a film taken by three 
cameras installed on the human agent's head passing through forest areas. As shown in Figure 2, these cameras were 
positioned on the agent's head at specific angles and a human's height. 



 
The photos taken by the left camera were put in the TL folder, and the photos taken by the right camera were stored in 
the TR folder. Also, the photos taken by the middle camera were saved in the TS folder. The collected photos were 
modified and refined due to specific problems such as inaccurate angles and obscurity. Finally, a dataset of 40,981 
photos was created. The data set was expanded horizontally by adding rotated images to the right class, and the images 
in the right class were returned and placed in the left class. Similarly, middle-class photographs were rotated 
horizontally and placed in the same class. An example of this task is shown in Figures 3 and 4. 

In total, the dataset consisted of 81,962 photos. The number of photos in each class is listed below: 

- TR:28881 

- TL:28881 

- TS:24200 

30% of photos were used for testing, whereas 70% of them were used for training. 

 

Figure 2 How to install the cameras on the man's head 

 

Figure 3. extending the dataset by copying the reversed left class pictures to the dataset 

 

Figure 4 extending the dataset by copying the reversed center class pictures to the dataset 

 

 

B. Build and train the deep neural network model 

1. Building the model: The model built at this phase is a 16-layer deep neural network model, which is depicted very 

well in Figures 5 and 6. The first layer is a 16x16x3 input layer and is a layer for injecting photos. The next layer is 

a convolutional layer, which uses 4x4 filters. The third layer is the maxpooling layer, which reduces the network's 

complexity by reducing the photos' dimensions. In this layer, we have used 2 * 2 filters. Moreover, using a dropout 

layer help to prevent overfitting of the network. The end layers include the flatten, dense, and output layer, in which 

the output layer has three neurons that represent the three classes, left, right, and middle. 



 
The elu function was used as the activation function in this model. 

 

2. Train the model: We want to teach the neural network model using the prepared dataset. As mention, the number of 
photos in the database was 81962, which generally have a large volume and dimensions, and cause a lot of overhead in 
the neural network model, so the dimensions of the photos are changed to 101*101*3, which results in the number of 
neurons in the first layer decreases dramatically. In this phase, we increase the dataset size by the data augmentation 
function (Figure 7 and 8) to 322560 photos, of which 2580488 photos are for training, and 64512 photos are for testing. 

 

Due to hardware limitations we face in the learning phase, it is impossible to load the entire dataset into the memory 
because the maximum system memory is 12 G.B. At the same time, the total size of files amounts nearly to seven G.B 
Since some of these files are summoned multiple times for the insertion of variables and modification of formats, they 
would require a minimum of 30 G.B. of RAM. Therefore, a better solution is using a custom generator function (the 
code is given in Figure 8) to put data into RAM in independent separate.  

model=Sequential() 
model.add(conv with elu activation function) 

model.add(MaxPooling2D()) 

model.add(Dropout(rate)) 
model.add(conv with elu activation function) 

model.add(MaxPooling2D()) 

model.add(Dropout(rate)) 
model.add(conv with elu activation function) 

model.add(MaxPooling2D()) 

model.add(Dropout(rate)) 
model.add(conv with elu activation function) 

model.add(MaxPooling2D()) 

model.add(Dropout(rate)) 

model.add(Flatten()) 

model.add(Dense(200)) 
model.add(Dense(3,activation='softmax')) 

 

Figure 5 The presented model in this article 

Figure 6 Model’s layers. 

datagen =ImageDataGenerator( 

rotation_range=10, 

rescale=0.1, 
zoom_range=0.2, 

width_shift_range=0.1, 

height_shift_range=0.1, 
fill_mode='constant', 
horizontal_flip=False) 

Figure 7 extending the dataset by data augmentation 

Figure 8 image data generator structure 



 
Adam and SGD optimizers tested this model. Finally, Adam was selected as the primary optimizer. There were 190 
epochs and 32 batches. The number of existing photos was equal to the dataset size ratio to each part's batch size. All 
deep learning processes are performed on the more powerful system mentioned earlier. Eventually, the entire compiled 
model saves as an h5 file (Figure 9) and Then transfer to the single-board computer on the Drone.  

C. Drone movement 

After the learning phase, the learned model file transfer to the Drone's computer. Each time a picture was taken by the 

camera embedded in the Drone, infusion to the model to recognize the picture class. This model returns a decimal 

number that specifies the degree of dependence of the image in the class. In the direct routes, the Drone's speed 

increases, and according to the degree of dependence of the image on the class, the Drone moves at a shallow angle 

to the left or right or directly. In a turn of roads, the Drone's speed decreases, and it moves to the left or right at a 

greater angle. The fuzzy schematic shown in Figure 11 consists of 4 variables include the previous robot's speed (p 

velocity), model output(learning result), drone speed(velocity), and rotation(rotation). 

model .save ( ” filelocation\filename.h5 ” ) 

#Custom Genator Function 

class My_Custom_Generator(keras.utils.Sequence) : 
def __init__(self, file_names, labels, batch_size) : 

self.filenames = file_names 

self.labels = labels 
self.batch_size = batch_size 

def __len__(self) : 

return (np.ceil(len(self.filenames) / 
float(self.batch_size))).astype(np.int) 

def __getitem__(self, idx) : 

batch_x = self.filenames 
[idx * self.batch_size : (idx+1) * self.batch_size] 

batch_y = self.labels 

[idx * self.batch_size : (idx+1) * self.batch_size] 
return np.array([ 

resize(imread('dataset_location'+ 

str(file_name)), (101, 101, 3)) 
for file_name in batch_x])/255.0, np.array(batch_y( 

#import Data 

filenames_counter = 0 
labels_counter = -1 

for subdir, dirs, files in 

os.walk(train_dir): 
for file in files: 

filenames.append(file) 

labels[filenames_counter, 0] = labels_counter 
filenames_counter = filenames_counter + 1 

labels_counter = labels_counter+1 

#categorizing the photos 

y_labels_one_hot = to_categorical(labels) 

#shuffling the Data 

filenames_shuffled,lablel_shuffled = 

shuffle(filenames,y_labels_one_hot) 

Figure 9 Custom Data Generator Function, import data and categorizing the data. 

Figure 10 image data generator structure 



 

 

 

 

The quantity of each of the variables and their limits is determined (Figures 12 and 13), and then the fuzzy rules are 

defined in Figure 14. 

 

 

 

 

 

 

After determining the angle and the speed by the fuzzy system, the values obtained are given to the FlytOS API 

(shown in Figure 15) to generate the required commands for the flight controller. 

 

#fuzzy step 
learn=ctrl.Antecedent(np.arange(-1,1.01,0.01),'learn') 

p_velocity=ctrl.Antecedent(np.arange(0,1.41,0.01),'p_velocity') 

velocity=ctrl.Consequent(np.arange(0,1.41,0.01),'velocity') 
rotate=ctrl.Consequent(np.arange(-5,5.1,0.1),'rotate') 

 

#membership function 

learn['left'] = fuzz.trimf(learn.universe, [-1, -1, 0]) 

learn['center'] = fuzz.trimf(learn.universe, [-0.5, 0, 0.5]) 

learn['right'] = fuzz.trimf(learn.universe, [0, 1, 1]) 
 

p_velocity['low'] = fuzz.trimf(p_velocity.universe, [0, 0, 0.6]) 

p_velocity['medium'] = fuzz.trimf(p_velocity.universe, [0.4, 0.7, 1]) 
p_velocity['high'] = fuzz.trimf(p_velocity.universe, [0.8, 1.4, 1.4]) 

 

velocity['low'] = fuzz.trimf(velocity.universe, [0, 0, 0.6]) 
velocity['medium'] = fuzz.trimf(velocity.universe, [0.4, 0.7, 1]) 

velocity['high'] = fuzz.trimf(velocity.universe, [0.8, 1.4, 1.4]) 

 
rotate['t_left'] = fuzz.trimf(rotate.universe, [-5, -5, 0]) 

rotate['straight'] = fuzz.trimf(rotate.universe , [-1, 0, 1]) 

rotate['t_right'] = fuzz.trimf(rotate.universe, [0, 5, 5]) 

 

Figure 12 Definition of fuzzy system variables 

Figure 13 Fuzzy system membership 

Figure 11 Fuzzy logic input and outputs 



 

 

 
 

EXPERIMENTAL RESULTS 
The Learning phase: 

In the deep learning section, two optimizers (adam and sgd) and two activation functions (tanh and elu) are used to 

teach the model. We first taught the model by the SGD Optimizer and 10,798 data to measure the accuracy and error, 

which results in Table I demonstrate that overfitting has occurred. As shown in Table II, we used dropout layers after 

maxpooling layers to avoid overfitting. The model is also taught using the adam optimizer and the 81962 data sample, 

which also uses dropout layers, and the results are shown in Table III.  Due to the increase in dataset size and hardware 

constraints, it is impossible to load all images at once, therefore place them in the memory as batches but causes to 

increases the learning time. Finally, the dataset volume has been increased to 322560 using augmentation, which 

increases the learning accuracy to 94.290 (Table IV). Test the trained model is performed by a set of images outside 

the data set and taken by another camera. To calculate the accuracy, we use 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
∗ 100, And 

according to the data in Table V, accuracy 93.18 is obtained. 

 
Table I RESULTS FOR THE SGD METHOD 

Epoch Acc Loss ValAcc ValLoss Data 

90 0.9988 0.0092 0.8294 0.6590 10798 

 

 

rule1=ctrl.Rule((learn['left']&p_velocity['low']),velocity['low']) 

rule2=ctrl.Rule((learn['left']&p_velocity['low']),rotate['t_right']) 

rule3=ctrl.Rule((learn['left']&p_velocity['medium']),rotate['t_right']) 
rule4=ctrl.Rule((learn['left']&p_velocity['medium']),velocity['low']) 

rule5=ctrl.Rule((learn['left']&p_velocity['high']),velocity['medium']) 

rule6=ctrl.Rule((learn['left']&p_velocity['high']),rotate['t_right']) 
rule7=ctrl.Rule((learn['center']&p_velocity['low']),velocity['medium']) 

rule8=ctrl.Rule((learn['center']&p_velocity['low']),rotate['straight']) 

rule9=ctrl.Rule((learn['center']&p_velocity['medium']),velocity['high']) 
rule10=ctrl.Rule((learn['center']&p_velocity['medium']),rotate['straight']) 

rule11=ctrl.Rule((learn['center']&p_velocity['high']),velocity['high']) 

rule12=ctrl.Rule((learn['center']&p_velocity['high']),rotate['straight']) 
rule13=ctrl.Rule((learn['right']&p_velocity['high']),velocity['medium']) 

rule14=ctrl.Rule((learn['right']&p_velocity['high']),rotate['t_left']) 

rule15=ctrl.Rule((learn['right']&p_velocity['low']),velocity['low']) 
rule16=ctrl.Rule((learn['right']&p_velocity['low']),rotate['t_left']) 

rule17=ctrl.Rule((learn['right']&p_velocity['medium']),rotate['t_left']) 

rule18=ctrl.Rule((learn['right']&p_velocity['medium']),velocity['low']) 

 

Figure 14 fuzzy system rules 

Figure 15 System schema 



 
Table II RESULTS FOR THE SGD METHOD WITH DROPOUT LAYERS 

Epoch Acc Loss ValAcc ValLoss Data DrR 

90 0.9336 0.1693 0.8432 0.4718 10798 0.1 

 
Table III RESULTS FOR THE ADAM METHOD WITH DROPOUT LAYERS AND 81962 PICTURES. 

Epoch Acc Loss ValAcc ValLoss DrR Time

(h) 

143 0.9343 0.1543 0.9393 00.1736 0.1 120 

68 0.8745 0.3234 0.9114 0.2411 0.3 54 

67 0.9043 0.2513 0.9127 0.2358 0.2 53 

 

 
Table IV RESULTS FOR THE ADAM METHOD WITH DROPOUT LAYERS, DATA AUGMENTATION, AND ELU 

ACTIVATION FUNCTION. 

Epoch Acc Loss ValAcc ValLoss DrR Time

(h) 

95 0.9429 0.1551 0.9628 0.1020 0.1 145 

 
 

Drone Locomotion in Natural Environments: 

The robot was tested in a low-traffic road in the suburbs under the mentioned conditions. Some information, such as 

Drone's route, speed, route length, etc., is shown in Figure 16. The Drone was filmed when it was flying and moving. 

Alessandro Giusti et al. [17] compared their results to those of the previous works. According to Table 7, the first row 

shows that the accuracy of the trained network in this paper was 94.290. 

 
Table V Test Result 

subject L C R SUM 

number of images 16 9 19 44 

True Recognition 16 7 18 41 

false Recognition 0 2 1 3 

 



 

 
Figure 16 The path is taken in this article 

 
Table VI COMPARE OUR RESULTS TO PREVIOUS WORK 

method this 

model 

DNN Sailenc [37] H1 H2 

accuracy 94.290 85.2 52.3 36.5 86.5 82 

 

CONCLUSION 
The method used in this article is more accurate than other methods. The accuracy was improved due to the use of 

dropout layers after maxpooling layers in addition to increasing the dataset size. The dataset was four times bigger 

than the dataset used in the source paper. This larger dataset helped to enhance accuracy significantly. According to 

Table 5, both the training and evaluation phases produced nearly the same accuracy, which shows that the results 

were acceptable. The fuzzy, TensorFlow, Keras, and other libraries installed on the Drone's computer provided 

artificial intelligence research foundations. More appropriate single-board computers have been developed for use in 

smart drones. Most of these computers have been developed by NVIDIA. Different boards such as Jetson TX1, 

Jetson TX2, and Jetson Nano differ in energy consumption and the number of cores. They provide acceptable 

computational performance for neural networks and machine learning 
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