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Abstract 
Load Frequency Control (LFC) holds significant importance in the operation of power systems. It is a critical 

system that requires intelligent methods to address its associated challenges. In this article, we employ 

Reinforcement Learning (RL) as a solution to tackle the LFC problem specifically for two turbines. 

RL proves to be a promising approach for optimizing LFC due to its ability to learn from experience and make 

decisions accordingly. By utilizing RL, we aim to enhance the performance and efficiency of LFC in power 

systems. 

The application of RL in LFC involves training an RL agent to make decisions based on observed states, such 

as frequency and tie-line power deviations. The agent learns from feedback in the form of rewards and updates 

its policy accordingly. Through this iterative learning process, the RL agent aims to find an optimal control 

strategy for maintaining system frequency and power balance. 

By employing RL techniques, we strive to improve the effectiveness and reliability of LFC in power systems 

with two turbines, ultimately contributing to the stability and operational efficiency of the overall power grid. 
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I. Introduction 
Due to rapid economic growth, the demand for electricity has increased, and there has been a significant increase in 
the use of distributed energy sources. As a result, power grids have become larger and more complex, leading to an 
increase in factors that can disrupt the power grid. These disturbances, such as changes in load, can negatively impact 
the quality of the power frequency and pose a security threat to the grids. [1] 
Load Frequency Control (LFC) is a vital system in power system operation. Its purpose is to maintain a consistent 
frequency, distribute the load among generators, and manage tie-line interchange schedules. LFC ensures a stable 
power system by adjusting generator output in response to frequency changes. It plays a crucial role in supplying 
reliable power with good quality. Load-frequency control is necessary for stable power system operation and is 
employed to meet local load demands and restore the system's steady-state frequency (Δf) to zero. Therefore, it is 
important to implement load-frequency control in power grids to maintain a stable power frequency, typically at values 
like 50 and 60 Hz. Load-frequency control plays a crucial role in maintaining the balance between power supply and 
demand, especially when a large number of distributed energy sources are connected. 

As modern power systems have become more complex, various advanced control methods have been proposed for 

load-frequency control (LFC). These methods include optimal control [2-4], variable structure control [5, 6], adaptive 

control [7], self-regulation [8, 9], intelligent control [10], robust control [11], [12], as well as the application of 

machine learning and reinforcement learning (RL). Reinforcement learning is a technique in machine learning that 

imitates the learning abilities of humans and animals. It provides a model-free approach to solving optimal control 

problems expressed as Markov decision processes [1]. RL-based controller are applied in various practical 

applications including robotic systems, buildings energy, Tuning of an Aircraft Pitch PID Controller, etc. However, 

to the best of the authors’ knowledge, it has not been applied to design the load frequency controller for power systems 

so far. In this paper, we first present the LFC model of a power system with two different turbines including reheated 

and non-reheated ones. Then, by introducing an approperiate reward function, the design steps and parameter tuning 

of the load frequency control based on reinforcement learning is presented. Finally, the proposed contoller is applied 

to the LFC problem in power systems. 

The remainder of this paper is organized as follows: Section II presents, history, basics and applications of 

Reinforcement learning. In Section III the LFC model of a power system with two different turbines are presented. 

Section IV proposes parameter tuning and numerical studies and simulations and Section V presents conclusions with 

future work.  
 

II. History, importance and introduction of Reinforcement Learning 
Reinforcement learning is a field within machine learning that focuses on training intelligent agents to make sequential 

decisions in an environment. It draws inspiration from behavioral psychology and aims to develop algorithms that 

learn through trial and error interactions. The concept of reinforcement learning stemmed from the term "optimal 

control" that emerged in the late 1950s. It involved formulating a problem by designing a controller to minimize a 

measure of a system's behavior over time. Bellman introduced the concept of Markov decision processes (MDPs), 

which are fundamental to reinforcement learning, to formulate optimal control problems. Recent years have seen 

significant advancements due to the availability of computational resources and the development of deep learning 

techniques. 

Reinforcement learning  is a unique category of machine learning where the learner, or agent, learns to associate 

situations with actions that maximize a delayed reward signal. Unlike supervised or unsupervised learning, RL doesn't 

rely on a "teacher" to provide instructions for each action. Instead, it makes decisions through trial-and-error search 

and recognizes the delayed reward it receives from the environment it interacts with. RL is important for several 

reasons. Firstly, it provides a framework for training autonomous agents to learn and adapt in complex and dynamic 

environments without explicit programming. This makes it valuable in domains where explicit rules or solutions are 

difficult to specify, such as game playing, robotics, and autonomous driving. Secondly, reinforcement learning enables 

agents to learn optimal behavior through trial and error. By receiving feedback in the form of rewards or penalties 

from the environment, agents can improve their decision-making abilities over time. This is particularly useful in 

scenarios where the optimal strategy is not known in advance, and the agent must explore different actions to 

determine the best course of action. Additionally, reinforcement learning has contributed to advancements in our 

understanding of learning processes in both artificial and biological systems. Studying how artificial agents learn 

through reinforcement provides insights into the underlying mechanisms of learning and decision-making.   

 

In RL, an agent, which is the decision maker, takes an action (at) in a given state (st) and receives a reward (rt). After 

receiving the reward, the agent uses it to update the parameters of the "Policy Function" and the "Value Function."  

The goal is to maximize the total discounted expected reward. In reinforcement learning, developers establish a system 

of rewarding desired behaviors and punishing negative behaviors. Positive values are assigned to desired actions to 

encourage the agent to repeat them, while negative values are assigned to discourage undesired behaviors. 



 

In a dynamic sequential decision-making process, the state (st∈𝒮) represents a specific condition of the environment 

at discrete time steps (𝑡=0,1,…). The agent, through its interaction with the environment, observes this state and selects 

a deterministic or stochastic action (at∈𝒜) with the goal of maximizing future returns. In return, the agent receives an 

instantaneous reward (rt+1∈ℛ) as it transitions to the new state (st+1). This reward is typically quantitatively measured, 

and together, a sequence of states, actions, and rewards is generated, forming a Markov Decision Process (MDP). 

Figure 1 shows how the agent and the environment interact with each other in an MDP (Markov Decision Process). 

 

 
Figure (1) The interaction between agent and environment in an MDP. 

 

Reinforcement learning relies on a reward signal, which is a single value generated by the environment. This signal 

serves as a measure of how well the agent is performing in achieving its task objectives. To put it simply, the reward 

quantifies the effectiveness of taking a specific action given a certain observation (state). During the training process, 

the agent updates its policy based on the rewards it receives for different combinations of states and actions. In general, 

positive rewards are used to encourage certain actions by the agent, while negative rewards also known as penalties 

are employed to discourage other actions. A well-designed reward signal serves as a guide for the agent, helping it 

maximize its long-term reward expectation. 

In reinforcement learning, the agent consists of two main components: a policy and a learning algorithm.The policy 

serves as a guide for the agent, determining which actions to take based on the observations it receives from the 

environment. Typically, the policy is represented by a function approximator with adjustable parameters, such as a 

deep neural network. On the other hand, the learning algorithm plays a crucial role in continuously updating the policy 

parameters. It does so by considering the actions taken by the agent, the observations received, and the associated 

rewards. The ultimate aim of the learning algorithm is to discover an optimal policy that maximizes the total reward 

accumulated throughout the task. In essence, reinforcement learning involves the agent learning the most effective 

behavior through repeated interactions with the environment, without requiring direct human involvement. Table 1 

also declares the relation between reinforcement learning  and classical control systems and Figure 2 Showes the steps 

involved in training an agent using reinforcement learning. 

 

 
Figure (2) The steps involved in training an agent through reinforcement learning. 

 

 
Table 1- Translation of the behavior and policy of reinforcement learning into control system representation. 

Reinforcement 

Learning 
Control Systems 

Policy Controller 

Environment 

Everything that is not the controller — In the preceding diagram, the environment includes the 

plant, the reference signal, and the calculation of the error. In general, the environment can also 

include additional elements, such as: 

• Measurement noise 



 

Reinforcement 

Learning 
Control Systems 

• Disturbance signals 

• Filters 

• Analog-to-digital and digital-to-analog converters 

Observation 

Any measurable value from the environment that is visible to the agent — In the preceding 

diagram, the controller can see the error signal from the environment. You can also create agents 

that observe, for example, the reference signal, measurement signal, and measurement signal rate 

of change. 

Action Manipulated variables or control actions 

Reward 

Function of the measurement, error signal, or some other performance metric — For example, 

you can implement reward functions that minimize the steady-state error while minimizing 

control effort. When control specifications such as cost and constraint functions are available, you 

can use generateRewardFunction to generate a reward function from an MPC object or model 

verification blocks. You can then use the generated reward function as a starting point for reward 

design, for example by changing the weights or penalty functions. 

Learning 

Algorithm 
Adaptation mechanism of an adaptive controller 

 

III.  

A) Dynamic model of LFC system 

For the load-frequency control problem, the power system primarily experiences small variations in load, allowing it 

to be effectively represented by a linear model shown in Figure 3.  

 

 
Figure (3) Linear model of a single-area power system. 

 

To enhance the damping characteristics of the power system, the droop characteristic is utilized as a feedback gain, 

typically set to 1/R prior to load frequency control design.  In this case, the plant model for LFC Design with droop 

characteristic is given by:  

𝑃(𝑠) =
𝐺𝑔𝐺𝑡𝐺𝑝

1+ 𝐺𝑔𝐺𝑡𝐺𝑝
𝑅⁄

                                                                                                                         (1) 

 

Here, 𝐺𝑔 represents the dynamics of the governor (as described in equation 3), 𝐺𝑝 represents the dynamics of the load 

and machine (as described in equation 4), and 𝐺𝑡  corresponds to the dynamics of the turbine (equation 4 for non-

reheated turbines and equation 5 for reheated turbines). 

In this work, two different kinds of turbines are considered for the LFC design. 

 

1) Non-reheated Turbine : In a power system with a non-reheated turbine, the plant can be divided into three 

main components: 

• Governor with dynamics: 

𝐺𝑔 (𝑠) =
1

𝑇𝐺 𝑠 + 1 
                                                                                                                             (2) 

 
• Turbine with dynamics: 

https://de.mathworks.com/help/reinforcement-learning/ref/generaterewardfunction.html


 

𝐺𝑡 (𝑠) =
1

𝑇𝑇 𝑠 + 1
                                                                                                                              (3) 

 

• Load and machine with dynamics:  

𝐺𝑝 (𝑠) =
𝐾𝑝 

𝑇𝑃𝑠 + 1
                                                                                                                              (4) 

 
Now the open-loop transfer function for load frequency control is:  

𝑃(𝑠) =  𝐺𝑔𝐺𝑡𝐺𝑝 =
𝐾𝑝 

(𝑇𝑃𝑠 + 1)(𝑇𝑇 𝑠 + 1)(𝑇𝐺 𝑠 + 1 )
                                                                                 (5) 

 
2) Reheated Turbine: For reheated turbine, the dynamics of the turbine becomes:  

𝐺𝑡 (𝑠) =
𝑐𝑇𝑟 𝑠+1

(𝑇𝑟 𝑠+1)(1+𝑇𝑇 𝑠)
                                                                                                                  (6) 

 
In this context, 𝑇𝑟  is a fixed value, and c represents the proportion (percentage) of power generated by the reheat 

process in relation to the total generated power. And the open-loop transfer function for this turbine becomes:  

𝑃(𝑠) =  𝐺𝑔𝐺𝑡𝐺𝑝 =
𝐾𝑝 (𝑐𝑇𝑟 𝑠+1)

(𝑇𝑃𝑠 + 1)(𝑇𝑇 𝑠 + 1)(𝑇𝐺 𝑠 + 1 )
                                                                                 (7) 

 

B) Model Parameters 
1) Non-Reheated Turbine:  

The model parameters for the power system that utilizes a non-reheated turbine are provided as follows: 

 𝐾𝑝  = 120,  𝑇𝑝 = 20, 𝑇𝑇  = 0.3,   𝑇𝐺  = 0.08,   𝑅 = 2.4  

Consequently, the plant model is:  

𝑃(𝑠)  =
120

(20𝑠 + 1)(0.3𝑠 + 1)(0.08𝑠 + 1 )
                                                                                                 (8) 

 

2) Reheated Turbine:  

The model parameters for a power system with a reheated turbine are given by:  

 𝐾𝑝  = 120,  𝑇𝑝 = 20, 𝑇𝑇  = 0.3,   𝑇𝐺  = 0.08,   𝑅 = 2.4,  𝑇𝑟  = 4.2, 𝑐 = 0.35 

And The plant model is:  

𝑃(𝑠)  =
120(1.47𝑠 + 1)

(20𝑠 + 1)(0.3𝑠 + 1)(0.08𝑠 + 1 )
                                                                                                  (9)  

 

IV. Proposed RL-based LFC design 
Reinforcement learning (RL) is a framework that doesn't require a model and is used to tackle optimal control 

problems. Many RL research studies utilize open-source tools like Python and OpenAI Gym environments. In our 

case, we make use of MATLAB's Reinforcement Learning Toolbox. We develop the Load Frequency Control (LFC) 

using this toolbox and train it using the Deep Deterministic Policy-Gradient (DDPG) algorithm. To simulate the LFC 

and evaluate its performance, we employ Simulink. This approach allows industrial engineers to easily adapt and 

experiment with other systems of their choice. 

Equation (8) described the Non-Reheated turbine transfer function and we write one realization of this transfer 

function for simulation. In simulation the input of the system is a desired constant and the its output is the load 

frequency controller changes. The results of the turbine's simulation are shown in Figure 4. 

The RL Agent is created using MATLAB's RL Toolbox. It takes three inputs: the observation vector, a reward 

function, and a boolean variable called "isdone". 

 

• A constant input is considered zero. 

•  The action signal for this environment that is sent to the plant. 

• For this environment, there are three observation signals sent to the agent, specified as a vector signal. The 

observation vector is [∫ 𝑒𝑑𝑡 𝑒 ℎ ]𝑇  , where: 

• 𝛥𝑓 is the frequency deviation. 

• 𝑒 = 𝑟 − 𝛥𝑓, where r is the reference value for 𝛥𝑓. Showed in figure 5.  

•  



 

 
Figure (4)) SIMULINK Model for the proposed RL-based LFC. 

 

 
Figure (5) Signals of observation. 

 

• The reward function is designed in such a way that if the frequency control load changes are less than or 

equal to 1, it will get a reward of 10, and if this value is greater, the reward value will be 1. Otherwise, 100 

negative points are considered as a penalty as shown in Figure 6. 

Reward function:         

        10(|𝑒| < 0.1) − 1(|𝑒| ≥ 0.1) − 100(𝛥𝑓 ≤ −60 || 𝛥𝑓≥ 60) 

 
Figure (6) Reward function 

 

• The isdone signal terminates the simulation if it goes out of the specified frequency range. In such cases, the 

agent does not receive a reward at the end of the episode as shown in Figure 7. 

•  

 
Figure (7) The isdone signal 

 

• The output from the RL Agent contains the load frequency control changes.  

The realization of Non-Reheated and Reheated turbines’ transfer function are shown in Figures 8 and 9, respectively. 

 



 

 
Figure (8) The realization of Non-Reheated turbine transfer function 

 

 
 

Figure (9) The realization of Reheated turbine transfer function. 
DDPG is an algorithm that operates without a model and focuses on learning policies in complex environments with 
high-dimensional and continuous action spaces. It achieves this by utilizing deep function approximators. 
The DDPG agent is comprised of two main components: the actor and the critic. Both the actor and the critic have 
two fully connected layers, with a hidden layer size of 500. Additionally, they incorporate a Rectified Linear Unit 
(ReLU) activation layer. Please note that in Figure 10.  
Only the critic's architecture is displayed. By utilizing deep neural networks and the DDPG algorithm, the actor and 
critic work together to optimize the agent's decision-making process in continuous action spaces. This architecture 
allows the agent to effectively learn and approximate the optimal policy for the given task. 
 

 
Figure (10) Critic Architecture. 

 

IV. Results Discussion 
Now we present the results of experiments conducted. We checked all permutations of the integrator blocks and choose 
the training that was faster and had better output. Every training curve was stopped at an Average Reward value of 
1900 as at this value, the agent could successfully tune the controller. Figure 11 and 12 show the training for Non-
Reheated and Reheated turbine. 
 



 

 
Figure (11) Training result for Non-Reheated turbine.                       

 

 

 

 
Figure (12) Training result for Reheated turbine. 

 

For comparison, we employed the well-known PID controler for the LFC problem. The frequency deviation (Δf) and 

control input for the proposed RL-based load frequency controller and PID controller for a power system with non-

reheated and reheated turbines are plotted in Figures 15 and 16, respectively. As shown, the time responses of the 

frequency deviaion and the corresponding  control input are much better in our proposed LFC approach. 

 

 
Figure (13) PID controller for Non-Reheated tubine. 

 

 



 

Figure (14) PID controller for Reheated tubine. 

 

 

 
Figure (15) a) Responses of power systems with Non-Reheat turbine in two modes of reinforcement learning and PID 

controller and b) Control input of Non-Reheated turbine during training. 

  

 
Figure (16) a) Responses of power systems with Reheat turbine in two modes of reinforcement learning and PID 

controller and b) Control input of Reheated turbine during training. 

 
Conclusions 
In order to address the significant Load Frequency Control (LFC) problem in power systems, we employed the 
MATLAB RL Toolbox. This toolbox operates on the basis of learning policies and algorithms, allowing us to 
effectively tackle the LFC challenge. The outcomes of our approach are presented in Figures 12 and 13, showcasing 
the results obtained through RL. It is evident that RL yields superior outputs compared to the PID controller. 
The RL methodology offers a powerful and adaptive solution for LFC, enabling the agent to learn optimal control 
strategies through interactions with the environment. By leveraging RL techniques, we were able to improve the 
performance and efficiency of the LFC system, resulting in more accurate frequency and power balance. The visual 
representations in Figures 13 and 14 provide a clear demonstration of the advantages of RL over the conventional PID 
controller approach. This underscores the effectiveness and potential of RL in addressing complex problems in power 
systems like LFC. 
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